As Astronomy is the oldest of the sciences, it has a long history which evolves from one stage of life to another.
In ancient times, early cultures identified celestial objects with gods and spirits. They related these objects (and their movements) to phenomena such as rain, drought, seasons, and tides. It is generally believed that the first "professional" astronomers were priests (such as the Magi), and that their understanding of the "heavens" was seen as "divine", hence astronomy's ancient connection to what is now called astrology. Ancient structures with possibly astronomical alignments (such as Stonehenge) probably fulfilled both astronomical and religious functions.
In the ancient times, calendars of the world would have usually been set by the Sun and Moon (measuring the day, month and year) and were of importance to agricultural societies, in which the harvest depended on planting at the correct time of year. The most common modern calendar is based on the Roman calendar, which divided the year into twelve months of alternating thirty and thirty-one days apiece. In 46 BC Julius Caesar instigated calendar reform and adopted a calendar based upon the 365 1/4 day year length originally proposed by 4th century BC Greek astronomer Callippus.
- NAMING THE PLANETS
The spread of knowledge tends to follow the two routes of trade and war. As great empires were expanding, they eventually brought their gods, customs, and learning with them. The earliest civilisation believed that the stars and planets were actually ruled by gods. How amazing!
One example is the Babylonians named each planet after the god which they believed had most in common with that planet's characteristics. In addition, the Greeks and the Romans soon adopted this Babylonian system, replacing the names of the planets with those of their gods. Hence, all planet names can be traced directly to the Babylonian planet-gods such as: Nergal has become Mars, and Marduk has become the god Jupiter.
- Babylonian records
The earliest astronomical records are in the form of clay tablets from ancient Mesopotamia, the "land between the rivers" Tigris and Euphrates, where the ancient kingdoms of Sumer, Assyria, and Babylonia were located. A form of writing known as cuneiform emerged among the Sumerians around 3500-3000 BC. Our knowledge of Sumerian astronomy is indirect, via the earliest Babylonian star catalogues dating from about 1200 BC. The fact that many star names appear in Sumerian suggests a continuity reaching into the Early Bronze Age. Astral theology, which gave planetary gods an important role in Mesopotamian mythology and religion, began with the Sumerians. They also used a sexagesimal (base 60) place-value number system, which simplified the task of recording very large and very small numbers. The modern practice of dividing a circle into 360 degrees, of 60 minutes each, began with the Sumerians.
Classical sources frequently use the term Chaldeans for the astronomers of Mesopotamia, who were, in reality, priest-scribes specializing in astrology and other forms of divination.
The first evidence of recognition that astronomical phenomena are periodic and of the application of mathematics to their prediction is Babylonian. Tablets dating back to the Old Babylonian period [disambiguation needed] document the application of mathematics to the variation in the length of daylight over a solar year. Centuries of Babylonian observations of celestial phenomena are recorded in the series of cuneiform tablets known as the Enūma Anu Enlil. The oldest significant astronomical text that we possess is Tablet 63 of the Enūma Anu Enlil, the Venus tablet of Ammi-saduqa, which lists the first and last visible risings of Venus over a period of about 21 years and is the earliest evidence that the phenomena of a planet were recognized as periodic. The MUL.APIN, contains catalogues of stars and constellations as well as schemes for predicting heliacal risings and the settings of the planets, lengths of daylight measured by a water-clock, gnomon, shadows, and intercalations. The Babylonian GU text arranges stars in 'strings' that lie along declination circles and thus measure right-ascensions or time-intervals, and also employs the stars of the zenith, which are also separated by given right-ascensional differences.
A significant increase in the quality and frequency of Babylonian observations appeared during the reign of Nabonassar (747-733 BC). The systematic records of ominous phenomena in astronomical diaries that began at this time allowed for the discovery of a repeating 18-year cycle of lunar eclipses, for example. The Greek astronomer Ptolemy later used Nabonassar's reign to fix the beginning of an era, since he felt that the earliest usable observations began at this time.
The last stages in the development of Babylonian astronomy took place during the time of the Seleucid Empire (323-60 BC). In the third century BC, astronomers began to use "goal-year texts" to predict the motions of the planets. These texts compiled records of past observations to find repeating occurrences of ominous phenomena for each planet. About the same time, or shortly afterwards, astronomers created mathematical models that allowed them to predict these phenomena directly, without consulting past records. A notable Babylonian astronomer from this time was Seleucus of Seleucia, who was a supporter of the heliocentric model.
Babylonian astronomy was the basis for much of what was done in Greek and Hellenistic astronomy, in classical Indian astronomy, in Sassanian Iran, in Byzantium, in Syria, in Islamic astronomy, in Central Asia, and in Western Europe.
Now, let's enjoy a video on ancient astronomy which will help you to understand better of the history of Astronomy
Video Title: Ancient Astronomy
URL: http://www.youtube.com/watch?v=H-5dwJwau1Y
References:
0 comments:
Post a Comment